Klasifikasi Waiting Time for Pilot di Pelabuhan Tanjung Perak Menggunakan Metode Regresi Logistik - Synthetic Minority Oversampling Technique (SMOTE)

نویسندگان

چکیده

WTP didefinisikan sebagai selisih waktu antara pandu naik ke atas kapal (Pilot on Board (POB)) dengan penetapan pelayanan kapal. pada Pelabuhan Tanjung Perak memiliki standar kinerja operasional sebesar 108 menit. Namun, masih terdapat beberapa yang mengalami melebihi ditetapkan. Hal ini menyebabkan kerugian bagi pihak pengguna jasa pelabuhan dan penurunan pelabuhan. Oleh karena itu, dilakukan penelitian klasifikasi ≥108 menit untuk mengurangi terjadi. Metode digunakan adalah regresi logistik - Synthetic Minority Oversampling Technique (SMOTE) dalam meng-klasifikasikan proporsi sampel kelas minoritas 12%, dimana tersebut kurang dari 35% jumlah data artinya dikategorikan tidak seimbang. Hasil menunjukkan diperoleh faktor-faktor berpengaruh signifikan terhadap yaitu kedatangan kapal, cuaca, jenis gerak Model logistik-SMOTE nilai accuracy 86,67%, missclasifiation rate 0,133, sensitivity 0,873, spesificity 0,800, precision 0,980, AUC 0,933.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RBM-SMOTE: Restricted Boltzmann Machines for Synthetic Minority Oversampling Technique

The problem of imbalanced data, i.e., when the class labels are unequally distributed, is encountered in many real-life application, e.g., credit scoring, medical diagnostics. Various approaches aimed at dealing with the imbalanced data have been proposed. One of the most well known data pre-processing method is the Synthetic Minority Oversampling Technique (SMOTE). However, SMOTE may generate ...

متن کامل

SMOTE: Synthetic Minority Over-sampling Technique

An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of “normal” examples with only a small percentage of “abnormal” or “interesting” examples. It is also the case that the cost of misclassifying an abnormal (i...

متن کامل

Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem

The class imbalanced problem occurs in various disciplines when one of target classes has a tiny number of instances comparing to other classes. A typical classifier normally ignores or neglects to detect a minority class due to the small number of class instances. SMOTE is one of over-sampling techniques that remedies this situation. It generates minority instances within the overlapping regio...

متن کامل

Synthetic Minority Over-sampling TEchnique (SMOTE) for Predicting Software Build Outcomes

In this research we use a data stream approach to mining data and construct Decision Tree models that predict software build outcomes in terms of software metrics that are derived from source code used in the software construction process. The rationale for using the data stream approach was to track the evolution of the prediction model over time as builds are incrementally constructed from pr...

متن کامل

Oversampling for Imbalanced Learning Based on K-Means and SMOTE

Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Sains dan Seni ITS (e-journal)

سال: 2023

ISSN: ['2337-3520']

DOI: https://doi.org/10.12962/j23373520.v12i1.109844